Skip navigation

Application Laboratories

INP Greifs­wald is equip­ped with va­rious dia­gnostics me­thods for the ana­ly­sis of plas­ma pro­ces­ses and plas­ma sour­ces, of plas­ma-trea­ted sur­faces and spe­ci­fic plas­ma ap­p­li­ca­ti­ons such as bio­me­di­cal ap­p­li­ca­ti­ons and arc plas­mas in swit­ching de­vices, for cut­ting and wel­ding.

The pro­per­ties of ma­te­ri­als and the in­ter­ac­tion of ma­te­ri­als with the en­vi­ron­ment are pri­ma­ri­ly de­ter­mi­ned by sur­face con­di­ti­ons. By using plas­ma tech­no­lo­gy it is possible to spe­ci­fi­cal­ly mo­di­fy al­most any sur­face pro­per­ty and to generate new ma­te­ri­als with spe­cial func­tions that way. The ana­ly­sis of sur­faces is one of the spe­cial fiel­ds of the INP Greifs­wald. The exis­ting spec­trum of equip­ments, the know­ledge for ope­ra­ti­on and the me­thods for analysing mea­su­re­ment da­ta are con­ti­nuous­ly ex­ten­ded and im­pro­ved. Thus, it has be­en pos­si­ble for INP to pro­du­ce high­ly pre­cise re­sults all the ti­mes and to po­si­ti­on its­elf in the world-wi­de top-le­vel re­se­arch for ye­ars. The pro­duc­tion of pre­cise re­sults and the po­si­tio­n­ing in the in­ter­na­tio­nal top-le­vel re­se­arch are gui­ding prin­ci­ples of the in­sti­tu­te.


Determination of the chemical composition and bindings in the surface

  • High-resolution X-ray photoelectron spectroscopy (XPS)
    • Lateral resolution >27 µm
    • Energy resolution: 1 eV
    • 2D imaging mode
    • Ion source (argon or coronene C24H12) for the cleaning of the surface and production of depth profiles
  • Energy dispersive X-ray spectroscopy (EDX)
    • Fast quantitative element analysis for elements starting at atomic number 5 (boron)
    • Qualitative mapping and LineScan analysis
    • Complex analysis in combination with electron microscopy
  • FT infrared spectroscopy
    • Qualitative chemical analysis of functional groups in MIR spectral range
    • Sample specific configurations: ATR, IRRAS, transmission
    • FTIR mapping of planar samples (ATR microscopy)
    • Complex analysis in combination with EDX spectroscopy

Determination of the morphology of the surface

  • Atomic force microscopy (AFM)
    • Scan range:
      • max. 100 µm x 100 µm for overview images
      • ≤ 10 µm x 10 µm for detailed images
      • ≤ 1 µm x 1 µm for high-resolution images
    • Different measurement modes:
      • C-AFM static scanning in the contact mode
      • NC-AFM oscillating scanning in non-contact mode
      • IC-AFM oscillating scanning in approximated mode
      • LFM scanning considering lateral forces (friction measurement)
      • Maximum measurable heigth difference: 6 µm
  • Scanning electron microscope (SEM)
    • Lateral resolution: 1.0 nm
    • Effective magnification: 200000 fold
    • Microscopy without artefacts using gentle-beam mode (acceleration voltage from 100 V, metallization of the sample not necessary)
    • Quantitative 3D image of the sample surface
    • Selective detection of secondary and back-scattered electrons
    • Sample preparation by cross section ion polishing
  • Profilometry
    • Height resolution: 6.5 µm, 65 µm, 131 µm, 2 mm
    • Maximum sample size: 165 mm x 165 mm x 45 mm
      Maximum lateral resolution: 4 nm
  • Optical microscope with 3D function
    • Reflected light and transmitted light microscopy
    • Resolutions: 25x, 50x, 200x, 500x
    • Stereoscopic images (3D)
      Including digital image recording, video recording

Determination of the transmission/reflection of the surface

  • UV-Vis spectral photometry
    • Wavelength range: 200 nm to 100 nm
    • Optical constants (refraction index, extinction coefficient) and geometric layer thickness of single layers
    • Estimation of the band gap of semiconducting materials

Determination of the adhesive strength of the coating

  • Taber test
    • Characterization of the scratch and abrasion resistance of planar samples
  • Calotest (calotte grinding)
    • Layer thickness measurement from 200 nm
    • Diagnostics of multilayer structures
    • Characterization of the abrasion parameters of the coatings
  • Ultrasonic bath
    • Frequency: 35 kHz
    • Power: 2 x 35 W
    • Different test liquids

Determination of the contact angle/surface energy

  • Contact angle measuring instruments
    • Minimum drop volume: 0.5 µl
    • Testing with up to 4 liquids
      • Water
      • Ethylene glycol
      • Diiodomethane
      • Optional 4th liquid
    • Including video function
spektrale_ellipsometrie_zur_bestimmung_der_eigenschaften_duenner_schichten.jpg
Spectral ellipsometry determination of the properties of thin films
elektronenmikroskopische_aufnahme_einer_nanostrukturierten_sio2-schicht.jpg
Electron micrograph of nano-structured SiO2 layer
hochaufgeloeste_elektronenmikroskopieaufnahme_von_kobalt-nanopartikeln.jpg
High-resolution electron micrograph of cobalt nanoparticles

Contact

Dr. Antje Quade
Manager Surface Diagnostics
Project leader

Phone: +49 3834 - 554 3877
quadeinp-greifswaldde

 

Dr. Jan Schäfer
Manager Surface Diagnostics
Project leader

Phone: +49 3834 - 554 3838
jschaeferinp-greifswaldde

The arc research la­bo­ra­to­ry ser­ves pri­ma­ri­ly for ap­p­li­ca­ti­on-driven re­se­arch for the in­crea­se of re­lia­bi­li­ty and life­time of swit­ching de­vices. The­re­fo­re, ex­pe­ri­ments on vacuum arcs and wall-stabilized arcs are uti­li­zed to stu­dy the arc be­ha­viour and the elec­tro­de load in low, medium and high vol­ta­ge switch­ge­ars at dif­fe­rent cur­rent pul­se shapes. Spe­ci­fic elec­tro­de ar­ran­ge­ments in­clu­ding ab­la­ti­on nozz­les can be used to si­mu­la­te con­di­ti­ons in re­al swit­ching de­vices or to stu­dy the in­ter­ac­tion of the electric arc with elec­tro­des, walls as well as with ma­gne­tic fiel­ds. The cou­pling between different op­ti­cal dia­gnostics for the phy­si­cal ana­ly­sis of the arc is a uni­que feature of the la­bo­ra­to­ry. For in­stan­ce, op­ti­cal emis­si­on spec­tro­sco­py al­lows for the mea­su­re­ment of tem­pe­ra­tu­res and spe­cies den­si­ties in the electric arc. High-speed ima­ging tech­ni­ques is used to stu­dy of the dy­na­mics and struc­tu­re of the arc starting from the arc igni­ti­on pro­ces­s. In ad­di­ti­on, sur­face tem­pe­ra­tu­res of the elec­tro­des can be ana­ly­sed using combined diagnostic methods.

The la­bo­ra­to­ry equipment in­clu­des in par­ti­cu­lar:

  • Set­up for the ope­ra­ti­on of high-cur­rent arcs by me­ans of pul­sed cur­rent ge­ne­ra­tors with the pa­ra­me­ters (peak va­lues): si­nuso­idal cur­rent pul­ses (DAC) up to 80 kA/ 5 ms, 40 kA/ 10 ms, or 25 kA/20 ms, squa­re wa­ve pul­ses up to 10 kA/ 2 ms or 2kA/10ms, fle­xi­ble elec­tro­de ar­ran­ge­ment in­clu­ding ac­tua­tors for elec­tro­de movement
  • Va­cu­um cham­ber in­clu­ding moun­ting sup­port for elec­tro­des, pneumatic ac­tua­tor and ac­cess for op­ti­cal dia­gnostics and pro­be mea­su­re­ments
  • Electri­cal and op­ti­cal sen­sors (pho­to­di­odes) for re­cor­ding of temporal evolutions of cur­rent, vol­ta­ge and emission si­gnals in spe­ci­fic spec­tral ran­ges as well as cor­re­spon­ding me­thods for their ana­ly­sis 
  • 0.5 and 0.75 m spec­tro­graphs with in­ten­si­fied CCD ca­me­ras (sin­gle images with ex­po­sure ti­mes from few ns to ms) for op­ti­cal emis­si­on spec­tro­sco­py, in par­ti­cu­lar for mea­su­re­ments with high spa­ti­al and spec­tral re­so­lu­ti­on in the in spec­tral ran­ge from 300 nm to 900 nm with re­so­lu­ti­on of up to 0.05 nm
  • High speed ima­ging ca­me­ras for up to 70000 frames/s for the stu­dy of the arc dy­na­mics in­clu­ding spec­tral selec­tive fil­ters (nar­row band MIF, edge fil­ters, po­la­ri­zer fil­ters), double frame optics for si­mul­ta­neous re­cor­ding with two dif­fe­rent fil­ters and one ca­me­ra
  • Framing ca­me­ra (4 in­de­pen­dent images wi­t­hin e.g. 5 ns with ex­po­sure ti­me of 3 ns) and Streak ca­me­ra (tem­po­ral re­so­lu­ti­on <1 ns, 1 spa­ti­al di­men­si­on) for the ob­ser­va­ti­on of arc igni­ti­on pro­ces­ses in the ns-ran­ge 
  • Ther­mo­gra­phy / py­ro­me­try for con­tact­less mea­su­re­ment of sur­face tem­pe­ra­tu­res of e.g. elec­tro­des

Most of the mea­su­re­ment equipment (spec­tro­sco­py, high-speed ima­ging, ther­mo­gra­phy) are mo­bi­le and can be used for ex­ter­nal mea­su­re­ment cam­pai­gns.

Contact

Prof. Dr. Dirk Uhrlandt
Division Manager of Materials and Energy

Phone: +49 3834 - 554 461
uhrlandtinp-greifswaldde

Main to­pics of the ap­p­li­ca­ti­on-driven re­se­arch in the la­bo­ra­to­ry con­cern pro­cess safe­ty, sta­bi­li­ty and ef­fi­ci­en­cy of arc wel­ding technology. The fo­cus is put on the tem­po­ral­ly and spa­ti­al­ly re­sol­ved ana­ly­sis of the wel­ding arcs, the arc at­tach­ment at the elec­tro­des, the ma­te­ri­al trans­fer and the weld pool pro­per­ties. The plas­ma dia­gnostics al­lows for the mea­su­re­ments of tem­pe­ra­tu­re and spe­cies den­si­ties as well as, fi­nal­ly, the de­ter­mi­na­ti­on of the plas­ma pro­per­ties of the wel­ding arc. High-speed ima­ging tech­ni­ques is used to stu­dy the arc structure, its dy­na­mics and the ma­te­ri­al trans­fer. In ad­di­ti­on, sur­face tem­pe­ra­tu­res of the weld pool and of the metal drop­lets can be ana­ly­sed.

The la­bo­ra­to­ry al­lows for the stu­dy of wel­ding arc pro­ces­ses un­der realistic con­di­ti­ons in practical applications and is equip­ped with mo­dern mea­su­ring tech­ni­ques, in par­ti­cu­lar

  • Set­ups with fi­xed moun­ting of the welding and fle­xi­ble mo­ve­ment of test sub­stra­tes un­der the bur­ner for the op­ti­cal stu­dy of the pro­cess from dif­fe­rent sights of view, e.g. from top, par­al­lel or per­pen­di­cu­lar to the sub­stra­te sur­face in­clu­ding gas feed, ex­haust unit and ra­dia­ti­on pro­tec­tion
  • Cur­rent sour­ces of dif­fe­rent ma­nu­fac­tu­rers (e.g. Fro­ni­us CMT ad­van­ced 4000R, EWM Pho­enix 521 pro­gress pul­se cold­arc) as well as a fre­e­ly pro­gramma­ble sour­ce (Top­Con Qua­dro)
  • Electri­cal  and op­ti­cal sen­sors (pho­to­di­odes) for re­cor­ding of ti­me sequences of cur­rent, vol­ta­ge and emission si­gnals in spe­ci­fic spec­tral ran­ges as well as cor­re­spon­ding me­thods for their ana­ly­sis
  • 0.5 and 0.75 m spec­tro­graphs with in­ten­si­fied CCD ca­me­ras (sin­gle images with ex­po­sure ti­mes from few ns to ms) for op­ti­cal emis­si­on spec­tro­sco­py, in par­ti­cu­lar for mea­su­re­ments with high spa­ti­al and spec­tral re­so­lu­ti­on in the in spec­tral ran­ge from 300 nm to 900 nm with re­so­lu­ti­on of up to 0.05 nm
  • High speed ima­ging ca­me­ras for up to 70000 frames/s for pro­cess con­trol in­clu­ding spec­tral selec­tive fil­ters (nar­row band MIF, edge fil­ters, po­la­ri­zer fil­ters) with double frame optics  for si­mul­ta­neous re­cor­ding with two dif­fe­rent fil­ters and one ca­me­ra
  • Framing ca­me­ra (4 in­de­pen­dent images wi­t­hin e.g. 5 ns with ex­po­sure ti­me of 3 ns) and Streak ca­me­ra (tem­po­ral re­so­lu­ti­on <1 ns, 1 spa­ti­al di­men­si­on) for the ob­ser­va­ti­on of arc igni­ti­on pro­ces­ses in the ns-ran­ge
  • Ther­mo­gra­phy / py­ro­me­try for con­tact­less mea­su­re­ment of sur­face tem­pe­ra­tu­res of e.g. elec­tro­des
  • X-ray com­pu­ter to­mo­gra­phy for non-de­struc­tive dia­gnostics of elec­tro­des and ma­te­ri­al pro­bes

Most of the mea­su­re­ment set­ups (spec­tro­sco­py, high speed ima­ging, ther­mo­gra­phy) are mo­bi­le and can be used for ex­ter­nal mea­su­re­ment cam­pai­gns. 

Contact

Prof. Dr. Dirk Uhrlandt
Division Manager of Materials and Energy

Phone: +49 3834 - 554 461
uhrlandtinp-greifswaldde

The la­bo­ra­to­ry ser­ves for ap­p­li­ca­ti­on-driven stu­dies of light and ra­dia­ti­on sour­ces, photometric measurements of lu­mi­n­ance, colour temperature, colour rendering, luminous efficacy and other parameters. In par­ti­cu­lar, plas­ma light sour­ces can be cha­rac­te­ri­zed in de­tail in­clu­ding pro­ces­ses of ra­dia­ti­on ge­ne­ra­ti­on, trans­pa­ren­cy of bulbs, elec­tro­de pro­ces­ses, igni­ti­on and warm up. Spe­ci­fic expertise can be used to esti­ma­te bio­lo­gi­cal im­pact of light or to sup­port stu­dies in this di­rec­tion.

A number of specific diagnostics systems are available for the characterization of light sources, in particular:

  • Setup with appropriate current sources (freely selectable current forms up to 28 A, 100 kHz) for the simulation of a realistic lamp operation
  • Ulbricht-sphere ( 1.5 m diameter, spectral range from 350 nm to 850 nm, spectral resolution 1 nm) for the measurement of the spectral radiance (W/nm) and the luminous flux (lm)
  • Compact spectrometer (spectral range: 300 nm to 900 nm, resolution approx. 1 nm) for the measurement of the spectral irradiance (W/(m²nm))
  • Calibrated luminance camera for the measurement of the luminance (cd/m²)
  • 0.5 and 0.75 m spectrographs with intensified CCD cameras (single images with exposure times from few ns to ms) for optical emission spectroscopy, in particular for measurements with high spatial and spectral resolution in the in spectral range from 300 nm to 900 nm with resolution of up to 0.05 nm
  • Framing camera (4 independent images within e.g. 5 ns with exposure time of 3 ns) and Streak camera (temporal resolution <1 ns, 1 spatial dimension) for the observation of lamp ignition processes in the ns-range
  • Thermography / pyrometry for contactless measurement of surface temperatures of e.g. of glass bulbs or electrodes
  • X-ray computer tomography for non-destructive diagnostics of electrodes
  • UV and VUV spectroscopy for the analysis of radiation sources, in particular for the measurement of the UV/VUV radiance in absolute units

Contact

Prof. Dr. Dirk Uhrlandt
Division Manager of Materials and Energy

Phone: +49 3834 - 554 461
uhrlandtinp-greifswaldde

The fo­cus of the ap­p­li­ca­ti­on-driven re­se­arch in the la­bo­ra­to­ry is put on the in­crea­se of re­lia­bi­li­ty and life­time of electri­cal com­po­n­ents ta­king in par­ti­cu­lar into ac­count the as­pects of en­vi­ron­men­tal pro­tec­tion and en­er­gy ef­fi­ci­en­cy. The fol­lo­wing to­pics are cur­rent­ly under investigation on in the la­bo­ra­to­ries for high cur­rent and high vol­ta­ge en­gi­nee­ring (at the joint pro­fes­sor­ship at the Uni­ver­si­ty of Ros­tock):

  • electric con­tacts and con­junc­tions (long-term sta­bi­li­ty, aging, ther­mal di­men­sio­ning, de­sign)
  • par­ti­al di­sch­ar­ge dia­gnostics and ana­ly­sis of electri­cal com­po­n­ents
  • aging of iso­la­ti­on ma­te­ri­als un­der ex­tre­me con­di­ti­ons
  • electric arc plas­mas: ex­pe­ri­ments, mo­del­ling and dia­gnostics of swit­ching arcs (see al­so Arc Research La­bo­ra­to­ry of INP)

Available equipment:

  • High vol­ta­ge la­bo­ra­to­ry with di­gi­tal mea­su­ring sys­tem in­clu­ding par­ti­al di­sch­ar­ge mea­su­re­ment (ba­sic noi­se le­vel <1 pC), for AC vol­ta­ge up to 100 kV, DC vol­ta­ge up to 130 kV, im­pul­se vol­ta­ge 135 kV
  • Par­ti­al di­sch­ar­ge dia­gnostics (IEC 60270, UHF), impedance mea­su­re­ment sys­tem (35 TΩ, pro­be vol­ta­ge 10 kV), dielectric re­s­pon­se ana­ly­zer (200V, 100 μHz ..5 kHz)
  • Cli­ma­te la­bo­ra­to­ry with cli­ma­te cham­bers for coo­ling and warm up cy­cles (-70 - +180 °C), ther­mo-cham­bers (+250 °C)
  • High cur­rent la­bo­ra­to­ry with con­ti­nuous-cur­rent set­ups (max. 3000 A), tem­pe­ra­tu­re mea­su­re­ment with ther­mo-sen­sors as well as IR ca­me­ra tech­no­lo­gy 

Contact

Prof. Dr. Dirk Uhrlandt
Division Manager of Materials and Energy

Phone: +49 3834 - 554 461
uhrlandtinp-greifswaldde

Application and further development of different methods of plasma diagnostics

The focus is on the following methods:

  • Absorption spectroscopy in the UV-Vis-Mid-IR spectral range
  • Plasma monitoring by means of quantum cascade lasers
  • Laser-induced fluorescence
  • Microwave interferometry at 50 and 150 GHz
  • Mass spectrometry
  • Probe measurement
  • Optical emission spectroscopy (UV-VIS)

Different methods are also suitable for the mobile use for in situ measurements.

Contact

Prof. Dr. Ronny Brandenburg
Programme Manager Plasma Chemical Processes

Phone: +49 3834 - 554 3818
brandenburginp-greifswaldde

The INP Greifswald has its own microbiological laboratory of the security level 2 according to § 44 IfSG (German Infectious Diseases Protection Act) allowing activities with pathogens in accordance with § 49 IfSG and § 13 BioStoffV (2000/54/EG and 2010/32/EU). Current research activities include phytopathogens and human pathogens of risk groups 1 and 2. The microorganisms used are:

  • Bacillus atrophaeus endospores
  • Candida albicans
  • Enterococcus faecium
  • Escherichia coli
  • Geobacillus stearothermophilus endospores
  • Listeria innocua
  • Listeria monocytogenes
  • Micrococcus luteus
  • Pectobacterium carotovorum
  • Pseudomonas fluorescens
  • Pseudomonas marginalis
  • Salmonella enteritidis
  • Salmonella typhimurium
  • Staphylococcus aureus

In addition, the institute has cooperations with accredited and certified testing laboratories in the field of hygiene and participates in interlaboratory tests within research projects.

Contact

Prof. Dr. Thomas von Woedtke
Programme Manager Plasma Medicine

Phone: +49 3834 - 554 445
woedtkeinp-greifswaldde

De­ve­lop­ment of plas­ma pro­ces­ses for dis­in­fec­tion and ste­ri­liza­t­i­on of me­di­cal pro­ducts and hy­gie­niza­t­i­on of food pro­ducts. The fo­cus of the de­ve­lop­ment is cur­rent­ly on the fol­lo­wing sys­tems:

  • Gas plas­ma pro­ces­ses for the repro­ces­sing of me­di­cal de­vices
  • Gas plas­ma pro­ces­ses for the gent­le pre­ser­va­ti­on of food pro­ducts
  • Spe­cial plas­ma sour­ces to be build in­to en­do­scopes for the sup­port of the pre­pa­ra­ti­on and for the­ra­peu­tic ap­p­li­ca­ti­ons
  • Plas­ma pro­ces­ses for the an­ti­mi­cro­bi­al coa­ting

In ad­di­ti­on to dif­fe­rent plas­ma dia­gnostics me­thods (OES, LIF, MW in­ter­fe­ro­me­try), in-hou­se mi­cro­bio­lo­gi­cal la­bo­ra­to­ries are avail­able for the ana­ly­sis and op­ti­miza­t­i­on of the sys­tems and can be ma­de avail­able to ex­ter­nal users.

Contact

Prof. Jürgen Kolb
Programme Manager Decontamination

Phone: +49 3834 - 554 3950
juergen.kolb@inp-greifswald.de

Pro­vi­si­on, op­ti­miza­t­i­on and de­ve­lop­ment of me­thods and sys­tems of high-fre­quen­cy en­gi­nee­ring. They are used from the small-si­gnal ran­ge for dia­gnostic ap­p­li­ca­ti­ons to the lar­ge-si­gnal ran­ge for the ope­ra­ti­on of mi­cro­wa­ve plas­ma sour­ces.
The fo­cus is cur­rent­ly on the fol­lo­wing sys­tems:

  • (fre­quen­cy-re­sol­ved) mi­cro­wa­ve in­ter­fe­ro­me­try power con­trol­led and in free ra­dia­ting sys­tems up to 150 GHz
    • Elec­tron den­si­ty de­ter­mi­na­ti­on: 1012 – 1022 m-3,
      ∆t < 1 µs
    • De­ter­mi­na­ti­on of per­mit­ti­vi­ty und per­me­a­bi­li­ty
  • De­ve­lop­ment and im­ple­men­ta­ti­on of beam-shaping ele­ments (mir­rors and len­ses) for the ad­just­ment of Gaus­si­an beam paths up to 150 GHz
  • fre­quen­cy-re­sol­ved re­flec­to­metry in power con­trol­led and in free ra­dia­ting sys­tems up to 50 GHz
    • Sin­gle-port in­ter­fe­ro­me­try for the elec­tron den­si­ty de­ter­mi­na­ti­on
  • Ad­just­ment and op­ti­miza­t­i­on of me­thods of the di­gi­tal si­gnal pro­ces­sing
  • De­ve­lop­ment of mi­cro­wa­ve com­po­n­ents for the ma­ni­pu­la­ti­on of scat­te­ring pa­ra­me­ters
    • Pha­se shif­ter
    • Matching net­works
    • Mo­de cou­pler
    • Bar­ri­er-free re­ac­tor ac­cess ports
  • De­ve­lop­ment of mi­cro­wa­ve plas­ma sour­ces
    • Mi­ni-MIP (powers < 100 W)
    • Plexc (powers < 1500 W)

The de­ve­lop­ment ac­tivi­ties in the lis­ted fiel­ds of ac­tivi­ty are sup­por­ted by nu­me­ri­cal tools such as Mat­lab©, Com­sol Mul­ti­phy­sics© und CST Mi­cro­wa­ve Stu­dio©. The re­sults ob­tai­ned with it can be va­li­da­ted by me­ans of sys­tems for net­work ana­ly­sis with a mea­su­ring ran­ge up to 50 GHz.

Contact

Dr. Jörg Ehlbeck
Programme Manager Plasma Bioengineering

Phone: +49 3834 - 554 458
ehlbeckinp-greifswaldde